数学.在ABC中,角A.B.C的对边是a.b.c,已知sinC+cosC=1-sin(C/2)
2个回答
展开全部
1
sinC+cosC=1-sin(C/2)
2sin(C/2)cos(C/2)=2sin²(C/2)-sin(C/2)
∵sin(C/2)≠0
∴2cos(C/2)=2sin(C/2)-1
sin(C/2)-cos(C/2)=1/2
[sin(C/2)-cos(C/2)]^2=1/4
1-sinC=1/4,
sinC=3/4
2
∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
sinC+cosC=1-sin(C/2)
2sin(C/2)cos(C/2)=2sin²(C/2)-sin(C/2)
∵sin(C/2)≠0
∴2cos(C/2)=2sin(C/2)-1
sin(C/2)-cos(C/2)=1/2
[sin(C/2)-cos(C/2)]^2=1/4
1-sinC=1/4,
sinC=3/4
2
∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
展开全部
解:(1)sinC+cosC=1-sin(C/2)
2sin(C/2)cos(C/2)=2sin²(C/2)-sin(C/2)
∵sin(C/2)≠0
∴2cos(C/2)=2sin(C/2)-1
sin(C/2)-cos(C/2)=1/2
[sin(C/2)-cos(C/2)]^2=1/4
1-sinC=1/4,
sinC=3/4
(2)∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
2sin(C/2)cos(C/2)=2sin²(C/2)-sin(C/2)
∵sin(C/2)≠0
∴2cos(C/2)=2sin(C/2)-1
sin(C/2)-cos(C/2)=1/2
[sin(C/2)-cos(C/2)]^2=1/4
1-sinC=1/4,
sinC=3/4
(2)∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
参考资料: 满意答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询