如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动。 5

1)当E为AB的中点时,求异面直线AC与D1E所成角的余弦值;2)AE等于何值时,二面角D1-EC-D的大小为45°... 1)当E为AB的中点时,求异面直线AC与D1E所成角的余弦值;2)AE等于何值时,二面角D1-EC-D的大小为 45° 展开
 我来答
百度网友a3e3310
2013-09-28
知道答主
回答量:38
采纳率:0%
帮助的人:15.8万
展开全部
1、连结A1D,交AD1于F,
∵AD=AA1,
∴矩形ADD1A1是正方形,
∴A1D⊥AD1,
∵AB⊥平面ADD1A1,
A1D∈平面ADD1A1,
∴AB⊥A1D,
∵AB∩AD1=A,
∴A1D⊥平面ABD1,
∵D1E∈平面ABD1,
∴D1E⊥A1D。
2、在底面矩形ABCD中,连结DE、CE,
AE=BE=1=AD=BC,
∴△ADE和△BEC都是等腰RT△,
∴〈AED=〈BEC=45°,
∴〈DEC=180°-45°-45°=90°,
即DE⊥CE,
∵DD1⊥平面ABCD,
BC∈平面ABCD,
∴DD1⊥CD,
∵DD1∩DE=D,
∴CE⊥平面DD1E,
∵D1E∈平面D1DE,
∴CE⊥D1E,
∴〈D1ED是二面角D1-EC-D的平面角,
根据勾股定理,
DE=√2,,
D1E=√(DD1^2+DE^2)=√3,
∴cos<DED1=DE/D1E=√2/√3=√6/3,
∴二面角D1-EC-D的余弦值为√6/3。
S△BCE=BE*BC/2=1*1/2=1/2,
∴VB1-BEC=S△BCE*BB1/3=1/6,
B1E=√2,
B1C=√2,
∴B1E=B1C,
CE=√2,
△B1EC是正△,
S△B1EC=(√3/4)*(√2)^2=√3/2,
设B至平面ECB1距离为d,
VB-ECB1=S△ECB1*d/3=√3d/6,
VB1-BEC=VB-ECB1,
1/6=√3d/6,
∴d=√3/3,
∴点B到平面ECB1的距离为√3/3。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
dcylyq
2012-02-26
知道答主
回答量:17
采纳率:0%
帮助的人:8.1万
展开全部
碰到这种题先考虑空间直角坐标系,一般都可以解答出来。试试吧?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式