1的平方加2的平方加3的平方一直加到n的平方,和为多少

隐形的白兔
2012-02-03 · TA获得超过181个赞
知道答主
回答量:86
采纳率:0%
帮助的人:105万
展开全部
12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。
设:S=12+22+32+…+n2

另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即

S1=2S+n3+2n(1+2+3+…+n)………………………………………………..(1)

第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为:

S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:

22+42+62…+(2n)2=22(12+22+32+…+n2)=4S……………………………………..(2)

12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2

= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2

=22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n

=22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n

=4S-4(1+2+3+…+n)+n……………………………………………………………..(3)

由(2)+ (3)得:S1=8S-4(1+2+3+…+n)+n…………………………………………..(4)

由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n

即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

= n[n2+n(1+n)+2(1+n)-1]

= n(2n2+3n+1)

= n(n+1)(2n+1)

S= n(n+1)(2n+1)/ 6

亦即:S=12+22+32+…+n2= n(n+1)(2n+1)/6……………………………………(5)

以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数。

由(5)代入(2)得自然数偶数平方和公式为2n(n+1)(2n+1)/3,其中2n为最后一位自然数。

由(5)代入(3)得自然数奇数平方和公式为n(2n-1)(2n+1)/3,其中2n-1为最后一位自然数。

参考资料: http://blog.sina.com.cn/s/blog_600ce18b0100dxpk.html

爱在烟火季baby
2013-01-21 · TA获得超过2804个赞
知道答主
回答量:358
采纳率:0%
帮助的人:78.9万
展开全部
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n

2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式