1*1!+2*2!+.......n*n!=?
展开全部
解:1*1!+2*2!+……+n*n!
=(2-1)*1!+2*2!+……+n*n!
=2*1!-1*1!+2*2!+……+n*n!
=-1+2!+2*2!+……+n*n!
=-1+(2+1)*2!+……+n*n!
=-1+3*2!+3*3!+……+n*n!
=-1+3!+3*3!+n*n!
=-1+4!+4*4!+……+n*n!
=-1+(n+1)!
=(n+1)!-1
=(2-1)*1!+2*2!+……+n*n!
=2*1!-1*1!+2*2!+……+n*n!
=-1+2!+2*2!+……+n*n!
=-1+(2+1)*2!+……+n*n!
=-1+3*2!+3*3!+……+n*n!
=-1+3!+3*3!+n*n!
=-1+4!+4*4!+……+n*n!
=-1+(n+1)!
=(n+1)!-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询