离散数学:设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群。

设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群。... 设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群。 展开
 我来答
iicup
2017-06-14 · TA获得超过890个赞
知道小有建树答主
回答量:597
采纳率:85%
帮助的人:175万
展开全部
(a*b)^2=a^2*b^2
(a*b)*(a*b)=(a*a)*(b*b)
abab = aabb
a(ba)b = a(ab)b
ab=ba
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式