设有关于x的一元二次方程x的平方+2ax+b的平方=0
(1)若a是,0,1,2,3,四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间【0,3】内任取的一个数,b是从区间【...
(1)若a是,0,1,2,3,四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间【0,3】内任取的一个数,b是从区间【0,2】内任取的一个数,求上述方程有实根的概率。 展开
(2)若a是从区间【0,3】内任取的一个数,b是从区间【0,2】内任取的一个数,求上述方程有实根的概率。 展开
展开全部
分析:两问中的基本事件都是“取出一对实数a、b的值”,但第(1)问中的基本事件总数有限并且各基本事件之间是等可能的,属于古典概型;第(2)问中的基本事件总数无穷并且各基本事件之间是等可能的,属于几何概型.
解:设事件A为“方程x2+2ax+b2=0有实根”.
当a>0,b>0时,方程x2+2ax+b2=0有实根的等价条件为Δ=4a2-4b2=4(a2-b2)≥0,即a≥b.
(1)基本事件共12个:(0,0)、(0,1)、(0,2)、(1,0)、(1,1)、(1,2)、(2,0)、(2,1)、(2,2)、(3,0)、(3,1)、(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)=9/12=3/4.
(2)试验的所有基本事件所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其中构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为=(3×2-(1/2)×(2的平方))/(3×2)=2/3.
解:设事件A为“方程x2+2ax+b2=0有实根”.
当a>0,b>0时,方程x2+2ax+b2=0有实根的等价条件为Δ=4a2-4b2=4(a2-b2)≥0,即a≥b.
(1)基本事件共12个:(0,0)、(0,1)、(0,2)、(1,0)、(1,1)、(1,2)、(2,0)、(2,1)、(2,2)、(3,0)、(3,1)、(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)=9/12=3/4.
(2)试验的所有基本事件所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其中构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为=(3×2-(1/2)×(2的平方))/(3×2)=2/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询