在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于D,BE⊥MN于E。求证:DE=AD+BE
展开全部
分析:先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.解答:证明:∵∠ACB=90°,AC=BC,
∴∠ACD+∠BCE=90°,
又∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,而∠ACD+∠DAC=90°,
∴∠BCE=∠CAD.
∴△ADC≌△CEB(AAS).
∴AD=CE,DC=EB.
又∵DE=DC+CE,
∴DE=EB+AD.
不懂,请追问,祝愉快O(∩_∩)O~
∴∠ACD+∠BCE=90°,
又∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,而∠ACD+∠DAC=90°,
∴∠BCE=∠CAD.
∴△ADC≌△CEB(AAS).
∴AD=CE,DC=EB.
又∵DE=DC+CE,
∴DE=EB+AD.
不懂,请追问,祝愉快O(∩_∩)O~
展开全部
解:(1)线段DE、AD、BE之间的数量关系是DE=AD+BE.(2分)
(2)如图2,
猜想:(1)中得到的结论发生了变化.
证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°.
∴∠BCE+∠CBE=90°.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
∴∠ACD=∠CBE.
∵AC=CB,
∴△ACD≌△CBE.(3分)
∴AD=CE,CD=BE.(4分)
∵DE=CE-CD,
∴DE=AD-BE.(5分)
(3)如图3,
猜想:(1)中得到的结论发生了变化.
证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°.
∴∠BCE+∠CBE=90°.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
∴∠ACD=∠CBE.
∵AC=CB,
∴△ACD≌△CBE.(6分)
∴AD=CE,CD=BE.(7分)
∵DE=CD-CE,
∴DE=BE-AD.(8分)
(2)如图2,
猜想:(1)中得到的结论发生了变化.
证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°.
∴∠BCE+∠CBE=90°.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
∴∠ACD=∠CBE.
∵AC=CB,
∴△ACD≌△CBE.(3分)
∴AD=CE,CD=BE.(4分)
∵DE=CE-CD,
∴DE=AD-BE.(5分)
(3)如图3,
猜想:(1)中得到的结论发生了变化.
证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°.
∴∠BCE+∠CBE=90°.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
∴∠ACD=∠CBE.
∵AC=CB,
∴△ACD≌△CBE.(6分)
∴AD=CE,CD=BE.(7分)
∵DE=CD-CE,
∴DE=BE-AD.(8分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用AAS证明三角形ACD和三角形CBE全等即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询