求定积分∫(sinx-cosx)/3次根号下(sinx+cosx) [0,π/2]
1个回答
展开全部
[0,π/2] ∫(sinx-cosx)/(sinx+cosx)^(1/3) dx
=[0,π/2] ∫-d(sinx+cosx)/(sinx+cosx)^(1/3)
=[0,π/2] ∫-d(sinx+cosx)/(sinx+cosx)^(1/3)
=-3/2 (sinx+cosx)^(2/3)|[0,π/2]
=0
=[0,π/2] ∫-d(sinx+cosx)/(sinx+cosx)^(1/3)
=[0,π/2] ∫-d(sinx+cosx)/(sinx+cosx)^(1/3)
=-3/2 (sinx+cosx)^(2/3)|[0,π/2]
=0
追问
=[0,π/2] ∫-d(sinx+cosx)/(sinx+cosx)^(1/3)
是什么意思?
追答
凑微分,使其与分母中具有相同形式的变量
d(sinx+cosx) = (cosx-sinx)dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询