设总体X服从泊松分布P(λ),求P(X≥1) 的最大似然估计量
设总体X服从泊松分布P(λ),P(X≥1) 的最大似然估计量是1λxixi!e−λ=e−nλnπi=1λxixi!∴lnL=−nλ+ni...
因为X服从参数为λ的泊松分布;所以P(X=m)=λmm!e−λ,(m=0,1,2,…)设x1,x2,…xn是来自总体的一组样本观测值则最大似然函数为L(x1,x2,…,xn;λ)=nπi=1λxixi!e−λ=e−nλnπi=1λxixi!∴lnL=−nλ+ni...
扩展资料:
最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。
例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所在的序列之间的关系很有可能更接近。由于被研究序列的共同祖先序列是未知的,概率的计算变得复杂;
又由于可能在一个位点或多个位点发生多次替换,并且不是所有的位点都是相互独立,概率计算的复杂度进一步加大。尽管如此,还是能用客观标准来计算每个位点的概率,计算表示序列关系的每棵可能的树的概率。然后,根据定义,概率总和最大的那棵树最有可能是反映真实情况的系统发生树
P(X≥1)=1-P(X=0)=1-e∧(-λ),其实用λ的最大似然估计量(样本均值)替换λ就是P(X≥1)的最大似然估计量了
这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零