已知函数f(x)=cos(2X-π/3)+2sin(X-π/4)cos(X-π/4)(X∈R),求函数F(X)最小正周期。 5
2个回答
展开全部
f(x)=cos(2X-π/3)+2sin(X-π/4)cos(X-π/4)(X∈R),
=cos(2x-π/3)+sin(2x-π/2)=sin(2x-π/3+π/2)+sin(2x-π/2)=sin(2x+π/6)+sin(2x-π/2)
=2sin[(2x+π/6+2x-π/2)/2]cos[(2x+π/6-2x+π/2)/2]=2sin(2x-π/6)cos(π/3)=sin(2x-π/6)
其最小正周期为2π/2=π
x∈[-π/12,π/2]
2x-π/6∈[-π/3,5π/6]
在区间【-π/12,π/2】上的值域为[-√3/2,1]
=cos(2x-π/3)+sin(2x-π/2)=sin(2x-π/3+π/2)+sin(2x-π/2)=sin(2x+π/6)+sin(2x-π/2)
=2sin[(2x+π/6+2x-π/2)/2]cos[(2x+π/6-2x+π/2)/2]=2sin(2x-π/6)cos(π/3)=sin(2x-π/6)
其最小正周期为2π/2=π
x∈[-π/12,π/2]
2x-π/6∈[-π/3,5π/6]
在区间【-π/12,π/2】上的值域为[-√3/2,1]
展开全部
cos(2X-π/3)=cos2Xcosπ/3+sin2Xsinπ/3=1/2*cos2X+√3/2*sin2X
2sin(X-π/4)cos(X-π/4)=sin(2X-π/2)=-cos2X
f(x)=-1/2*cos2X+√3/2*sin2X=cos2Xcos2π/3+sin2Xsin2π/3=cos(2X-2π/3)
f(x)的最小正周期T=2π/w=π
x属于[-π/12,π/2],则2X-2π/3属于[-5π/6,π/3],函数f(x)在区间[-π/12,π/2]上的值域.:[-√3/2,1]
2sin(X-π/4)cos(X-π/4)=sin(2X-π/2)=-cos2X
f(x)=-1/2*cos2X+√3/2*sin2X=cos2Xcos2π/3+sin2Xsin2π/3=cos(2X-2π/3)
f(x)的最小正周期T=2π/w=π
x属于[-π/12,π/2],则2X-2π/3属于[-5π/6,π/3],函数f(x)在区间[-π/12,π/2]上的值域.:[-√3/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询