这个怎么证明极限
展开全部
|(n^2-2)/(n^2+n+1) -1|<ε
|(n^2-2 -n^2-n-1)/(n^2+n+1) |<ε
|(-n-3)/(n^2+n+1) |<ε
(n+3)/(n^2+n+1) <ε
(n+3)/(n^2+n+1 ) <ε
[(n+3) +(3n+3) ]/[ (n^2+n+1 ) +(3n+3) ] <ε
(4n+6)/(n^2+4n+4) <ε
(4n+6)/(n+2)^2 <ε
[4(n+2) -2]/(n+2)^2 <ε
4/(n+2) <ε
n+2 > ε/4
n > -2+ε/4
N = max { 1, -1+[ε/4] }
∀ε>0, ∃N =max { 1, -1+[ε/4] } , st
|(n^2-2)/(n^2+n+1) -1|<ε , ∀n>N
=>lim(n->∞)(n^2-2)/(n^2+n+1) =1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询