已知函数f(x)=x^3-ax^2-3x

(请求详解)已知函数f(x)=x^3-ax^2-3x.(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围(2)若x=-1/3是f(x)的极值点,求f(x)在... (请求详解)已知函数f(x)=x^3-ax^2-3x.
(1) 若f(x) 在区间 [1,+∞)上是增函数,求实数a的取值范围
(2)若x=-1/3是f(x)的极值点,求f(x)在[1,a]上的最大值
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图像与函数f(x)的图像恰有3个交点?若存在,请求出实数b的取值范围;若不存在,试说明理由
展开
来自太阳岛娇小玲珑的墨兰
2012-02-04 · TA获得超过2万个赞
知道大有可为答主
回答量:1754
采纳率:0%
帮助的人:2667万
展开全部
解:(Ⅰ)由题意得f′(x)=3x²-2ax-3,
∵f(x)在区间[1,+∞)上是增函数,
∴当x∈[1,+∞)时,恒有f′(x)≥0,
即3x²-2ax-3≥0在区间[1,+∞)上恒成立,
由 △=4a²+36>0,a/3≤1且f′(1)=-2a≥0,
解得a≤0,
(Ⅱ)依题意得 fʹ(1/3)=0,1/3+2/3a-3=0
a=4
∴f(x)=x³-4x²-3x,
令f′(x)=3x²-8x-3=0,
解得 x1=-1/3,x2=3
而 f(1)=-6,f(3)=-1/8,f(-13)=-1/2,
故f(x)在区间[1,4]上的最大值是f(1)=-6.
(Ⅲ)若函数g(x)=bx的图象与函数f(x)的图象恰有3个不同的交点,
即方程x³-4x²-3x=bx恰有3个不等的实数根,
而x=0是方程x³-4x²-3x=bx的一个实数根,则
方程x²-4x-3-b=0有两个非零实数根,
则 △=16+4(b+3)>0
-3-b≠0,
即b>-7且b≠-3,
故满足条件的b存在,其取值范围是(-7,-3)∪(-3,+∞).
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
甲乙丙丁宝
2012-02-04 · TA获得超过1311个赞
知道小有建树答主
回答量:637
采纳率:0%
帮助的人:332万
展开全部
2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式