如图所示:AB是○O的直径,AC是弦,CD是○O的切线,C为切点,AD⊥CD于点D

如图所示:AB是○O的直径,AC是弦,CD是○O的切线,C为切点,AD⊥CD于点D求证:(1)∠AOC=2∠ACD(2)AC²=AB*AD请各位帮忙小妹在这里谢... 如图所示:AB是○O的直径,AC是弦,CD是○O的切线,C为切点,AD⊥CD于点D
求证:(1)∠AOC=2∠ACD (2)AC²=AB*AD
请各位帮忙 小妹在这里谢谢热心的网友喽
展开
海语天风001
高赞答主

2012-02-04 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8092万
展开全部
证明:
1、连接BC
∵AB是直径
∴∠ACB=90
∴∠CAB+∠ABC=90
∵OA=OC
∴∠OCA=∠CAB
∴∠OCA+∠ABC=90
∵CD切圆O于C
∴∠OCD=90
∴∠OCA+∠ACD=90
∴∠ACD=∠ABC
∵OA=OB
∴∠ABC=∠OCB
∴∠AOC=∠ABC+∠OCB=2∠ABC
∴∠AOC=2∠ACD
2、
∵AD⊥CD
∴∠ADC=90
∴∠ADC=∠ACB
∵∠ACD=∠ABC
∴△ACD相似于△ABC
∴AC/AD=AB/AC
∴AC²=AB*AD
手机用户80257
2013-01-23 · TA获得超过236个赞
知道答主
回答量:64
采纳率:0%
帮助的人:24万
展开全部
分析:连接BC,由CD为圆O的切线,利用切线的性质得到OC与CD垂直,得到一对角互余,再由AB为圆O的直径,得到BC与CA垂直,得到一对角互余,利用同角的余角相等得到∠ACD=∠OCB,再由OC=OB,利用等边对等角得到一对角相等,∠AOC为三角形BOC的外角,利用外角的性质及等量代换得到∠AOC=2∠OCB,等量代换即可得证.解答:证明:连接BC,
∵CD是⊙O的切线,
∴∠OCD=90°,即∠ACD+∠ACO=90°,
∵AB为圆O的直径,
∴∠ACB=90°,即∠OCB+∠ACO=90°,
∴∠ACD=∠OCB,
∵OB=OC,∴∠B=∠OCB,
∵∠AOC为△BOC的外角,
∴∠AOC=∠B+∠OCB=2∠OCB,
则∠AOC=2∠ACD.点评:此题考查了切线的性质,圆周角定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式