3个回答
展开全部
y=x^2, y=√x,
x^2 =√x
x^4 = x
x(x^3-1) = 0
x=0 or 1
Vx
=π∫(0->1) [ (y1)^2 -(y2)^2 ] dx
=π∫(0->1) ( x -x^3 ) dx
=π[ (1/2)x^2 -(1/4)x^4 ]|(0->1)
=π/4
(1)
y==√(x-1) , x=4 , y=0
0=√(x-1)
x=1
Vx
=π∫(1->4) y^2 dx
=π∫(1->4) (x-1) dx
=(1/2)π[(x-1)^2]|(1->4)
=(9/2)π
(3)
let
x= sinu
dx= cosu du
x=0, u=0
x=1, u=π/2
∫(-1->1) (x+1)√(1-x^2) dx
=∫(-1->1) x.√(1-x^2) dx +∫(-1->1) √(1-x^2) dx
=0 +∫(-1->1) √(1-x^2) dx
=2∫(0->1) √(1-x^2) dx
=2∫(0->π/2) (cosu)^2 du
=∫(0->π/2) (1+cos2u) du
=[ u + (1/2)sin2u]|(0->π/2)
=π/2
x^2 =√x
x^4 = x
x(x^3-1) = 0
x=0 or 1
Vx
=π∫(0->1) [ (y1)^2 -(y2)^2 ] dx
=π∫(0->1) ( x -x^3 ) dx
=π[ (1/2)x^2 -(1/4)x^4 ]|(0->1)
=π/4
(1)
y==√(x-1) , x=4 , y=0
0=√(x-1)
x=1
Vx
=π∫(1->4) y^2 dx
=π∫(1->4) (x-1) dx
=(1/2)π[(x-1)^2]|(1->4)
=(9/2)π
(3)
let
x= sinu
dx= cosu du
x=0, u=0
x=1, u=π/2
∫(-1->1) (x+1)√(1-x^2) dx
=∫(-1->1) x.√(1-x^2) dx +∫(-1->1) √(1-x^2) dx
=0 +∫(-1->1) √(1-x^2) dx
=2∫(0->1) √(1-x^2) dx
=2∫(0->π/2) (cosu)^2 du
=∫(0->π/2) (1+cos2u) du
=[ u + (1/2)sin2u]|(0->π/2)
=π/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询