已知直线l经过抛物线y^2=(-4/3)x的焦点F,且与抛物线交予A,B两点,证以AB为直径的圆与抛物线的准线 位置关系

过程... 过程 展开
易冷松RX
2012-02-04 · TA获得超过2万个赞
知道大有可为答主
回答量:6091
采纳率:100%
帮助的人:3126万
展开全部
焦点F(-1/3,0),准线x=1/3。
设l的方程为x=ty-1/3代入抛物线方程得:9y^2+12ty-4=0,yA+yB=-4t/3,yAyB=-4/9。
xA+xB=t(yA+yB)-2/3=-4t^2/3-2/3。圆心为(-2t^2/3-1/3,2t/3)
[AB]=√(t^2+1)√[(yA+yB)^2-4yAyB]=√(t^2+1)√(16t^2/9+16/9)=4(t^2+1)/3。
圆的半径为2(t^2+1)/3,圆心到准线的距离为1/3-(-2t^2/3-1/3)=2(t^2+1)/3=半径。
所以,以AB为直径的圆与抛物线的准线相切。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式