函数f(x)=sin x^2+√3 sinx cosx在区间【π/4,π/2】上有最小值是___

百度网友af34c30f5
2012-02-05 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:6961万
展开全部
f(x)=sin^2x+√3 sinxcosx
f(x)=(1-cos2x)/2+√3 sin2x/2
f(x)=1/2-((1/2)*cos2x-(√3/2)*sin2x)
f(x)=1/2-(sinπ/6*cos2x-cosπ/6*sin2x)
f(x)=1/2-sin(π/6-2x)
x在R上的f(x)最小值f(π/2+2kπ)=1/2-1=-1/2
π/6-2x=π/2+2kπ
x=-π/6-kπ不在区间【,π/2】
讨论区间两端点
f(π/4)=1/2-sin(π/6-2π/4)=1/2-sin(-π/6)=(1+√3)/2
f(π/2)=1/2-sin(π/6-2π/2)=1/2-sin(-5π/6)=1
f(π/4)>f(π/2)
f(x)=sin x^2+√3 sinx cosx在区间【π/4,π/2】上有最小值是1
wjl371116
2012-02-06 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67430

向TA提问 私信TA
展开全部
函数f(x)=sin² x+(√3 )sinx cosx在区间【π/4,π/2】上有最小值是___
解:f(x)=(1-cos2x)/2+(√3/2)sin2x=(1/2)+(√3/2)sin2x-(1/2)cos2x
=(1/2)+sin2xcos(π/6)-cos2xsin(π/6)=(1/2)+sin(2x-π/6)
用五点作图法不难判断在区间[π/4,π/2]上的最小值为f(π/2)=(1/2)+sin(π-π/6)=(1/2)+sin(π/6)
=(1/2)+1/2=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式