1个回答
展开全部
解:f(x)=(1-cos2x)/2+√3sinxcosx-1/2.
=√(3/2)sin2x-(1/2)cos2x.
=sin2xcosπ-cos2xsinπ.
=sin(2x-π/6).
(1) f(-.π/12)=sin(-2*π/12-π/6).
=sin(-π/3).
=-√3/2.
(2)∵x∈[0,π/2] ∴-π/6≤2x-π/6≤5π/6.
f(x)=sin(2x--π/6)=sin(-π/6)=-sinπ/6=-1/2.
=-1/2.
∴当x=0时,f(x)min=-1/2.
=√(3/2)sin2x-(1/2)cos2x.
=sin2xcosπ-cos2xsinπ.
=sin(2x-π/6).
(1) f(-.π/12)=sin(-2*π/12-π/6).
=sin(-π/3).
=-√3/2.
(2)∵x∈[0,π/2] ∴-π/6≤2x-π/6≤5π/6.
f(x)=sin(2x--π/6)=sin(-π/6)=-sinπ/6=-1/2.
=-1/2.
∴当x=0时,f(x)min=-1/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询