1个回答
展开全部
f(x)=[1+√2cos(2x-π/4)]/sin(π/2-x)
=(1+sin2x+cos2x)/(cosx)
=[2sinxcosx+2(cosx)^2]/cosx
=2sinx+2cosx
=2√2sin(x+π/4)
-π/4<=x<=π/2,0<=x+π/4<=3π/4,0<=sin(x+π/4)<=1,0<=f(x)<=2√2。
所以,函数f(x)在区间[-π/4,π/2]上的最小值是0,最大值是2√2。
=(1+sin2x+cos2x)/(cosx)
=[2sinxcosx+2(cosx)^2]/cosx
=2sinx+2cosx
=2√2sin(x+π/4)
-π/4<=x<=π/2,0<=x+π/4<=3π/4,0<=sin(x+π/4)<=1,0<=f(x)<=2√2。
所以,函数f(x)在区间[-π/4,π/2]上的最小值是0,最大值是2√2。
更多追问追答
追问
1+√2cos(2x-π/4)怎么变成1+sin2x+cos2x的?教下,详细
追答
用余弦的差角公式展开:
1+√2cos(2x-π/4)=1+√2(cos2xcosπ/4-sin2xsinπ/4)=1+√2(√2/sin2x+√2/2cos2x)
=1+sin2x+cos2x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询