已知函数f(x)=1+sinxcosx,g(x)=cos^2(x+π/12), 问题如下
(1)设x=X0是函数y=f(X)的图像上的一条对称轴,求g(X0)的值。(2)求使h(x)=f(wx/2)+g(wx/2),(w大于0),在区间[-2π/3,π/3]上...
(1)设x=X0是函数y=f(X)的图像上的一条对称轴,求g(X0)的值。 (2)求使h(x)=f(wx/2)+g(wx/2),(w大于0),在区间[-2π/3,π/3]上是增函数的w的最大值
展开
1个回答
展开全部
(1)f(x)=(1/2)sin2x+1,x0=kπ+π/4。
g(x0)=[cos(kπ+π/4+π/12)]^2=[cos(kπ+π/3)]^2=(+-cosπ/3)^2=1/4。
(2)h(x)=(1/2)sinwx+1+[cos(wx/2+π/12)]^2
=(1/2)sinwx+(1/2)cos(wx+π/6)+3/2
=(1/2)sinwx+(1/2)coswxcosπ/6-(1/2)sinwxsinπ/6+3/2
=(1/4)sinwx+(√3/4)coswx+3/2
=(1/2)sin(wx+π/3)+3/2
-2π/3<=x<=π/3,-2wπ/3+π/3<=wx+π/3<=wπ/3+π/3。
则-2wπ/3+π/3>=-π/2且wπ/3+π/3<=π/2,0<w<=1/2,最大值为1/2。
g(x0)=[cos(kπ+π/4+π/12)]^2=[cos(kπ+π/3)]^2=(+-cosπ/3)^2=1/4。
(2)h(x)=(1/2)sinwx+1+[cos(wx/2+π/12)]^2
=(1/2)sinwx+(1/2)cos(wx+π/6)+3/2
=(1/2)sinwx+(1/2)coswxcosπ/6-(1/2)sinwxsinπ/6+3/2
=(1/4)sinwx+(√3/4)coswx+3/2
=(1/2)sin(wx+π/3)+3/2
-2π/3<=x<=π/3,-2wπ/3+π/3<=wx+π/3<=wπ/3+π/3。
则-2wπ/3+π/3>=-π/2且wπ/3+π/3<=π/2,0<w<=1/2,最大值为1/2。
更多追问追答
追问
(1)f(x)=(1/2)sin2x+1,x0=kπ+π/4。
x0不是等于kπ/2+π/4吗?
追答
哎呀。我总写错哈
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询