如图,三角形ABC中,角BAC=120°,D、E在BC上,且三角形ADE为等边三角形,求证CE/BC=DE^2/AB^2

求详解。... 求详解。 展开
青山见我我见青山
2012-02-05 · TA获得超过884个赞
知道小有建树答主
回答量:464
采纳率:33%
帮助的人:152万
展开全部
太简单吧???
题目中已知可知:角BAC=角AEC=120°,角BCA=角ACE,
则三角形ABC与EAC相似,
由相似三角形特点可知:EC/AC=EA/AB=CA/CB
把(EC/AC)和(CA/CB)相乘,得(EC/CB)=(EA/AB)^2
因为有:三角形ADE为等边三角形,EA=DE
故有:CE/BC=DE^2/AB^2

做这道题目有两个关键点:
1、要学会利用相似三角形的特点,相乘,这一灵感是从最后要求证明的结论倒推出来的;
2、注意题目中给的等边三角形的条件,将其替换,EA在这里不再是一个线段,而是长度,只要是长度相同的都可以代入。
手机用户f5b53
2012-02-07 · TA获得超过6万个赞
知道大有可为答主
回答量:3.7万
采纳率:0%
帮助的人:4960万
展开全部
:角BAC=角AEC=120°,角BCA=角ACE,
则三角形ABC与EAC相似,
由相似三角形特点可知:EC/AC=EA/AB=CA/CB
把(EC/AC)和(CA/CB)相乘,得(EC/CB)=(EA/AB)^2
因为有:三角形ADE为等边三角形,EA=DE
故有:CE/BC=DE^2/AB^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式