求y=2^x/2^x+1的反函数

 我来答
小溪趣谈电子数码
高粉答主

2019-10-30 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584830

向TA提问 私信TA
展开全部

求y=2^x/(2^x+1) 的反函数过程如下:

y=(2^x)/(1+2^x);


y(1+2^x)=2^x;

y+(y)(2^x)=2^x;

(1-y)2^x=y;

2^x=y/(1-y);

可以算出:x=log(2)[y/(1-y)]

即反函数是:y=log(2)[x/(1-x)]

扩展资料:

求反函数的要点及反函数的性质:

一、求反函数的要点:

1、求原函数的值域,由此确定反函数的定义域

2、反解原函数,用因变量y来表示自变量x;

3、将自变量x与因变量y互换,得出反函数的解析式并补充定义域。

二、反函数的性质:

1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

2、一个函数与它的反函数在相应区间上单调性一致;

3、一段连续的函数的单调性在对应区间内具有一致性;

4、严增(减)的函数一定有严格增(减)的反函数;

5、定义域、值域相反对应法则互逆(三反)。

蒲梗
2008-10-19 · TA获得超过300个赞
知道小有建树答主
回答量:120
采纳率:0%
帮助的人:109万
展开全部
反函数的定义是把原函数的x当做反函数的y,把原函数的y当作反函数的x 所以根据这个就很容易求出该函数的反函数
即x=2^y/(2^y+1),由于这个可能比较难算,可把2^y当作一个整体再经过计算得2^y=x/(x-1),可把这个化为对数函数就是y=log2[x/(x-1)]就是以2为底x/(x-1)的对数
所以该函数的反函数就是y=log2[x/(x-1)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
皮皮鬼0001
2015-10-12 · 经历曲折坎坷,一生平淡。
皮皮鬼0001
采纳数:38061 获赞数:137597

向TA提问 私信TA
展开全部
解由y=(2^x-1)/(2^x+1)
=(2^x+1-2)/(2^x+1)
=1-2/(2^x+1)
由2^x>0
知2^x+1>1
知0<1/(2^x+1)<1
则-1<-1/(2^x+1)<0
则-2<-2/(2^x+1)<0
则-1<1-2/(2^x+1)<1
即1<y<1
由y=(2^x-1)/(2^x+1)
得2^xy+y=2^x-1
即(y-1)2^x=-1-y
则2^x=(y+1)/(1-y)
即x=log2[(y+1)/(1-y)]
故原函数的反函数为
y=log2[(x+1)/(1-x)],x属于(-1,1).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-02-22 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1621万
展开全部

用y表示x即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
良驹绝影
2012-10-08 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
y=(2^x)/(1+2^x)
y(1+2^x)=2^x
y+(y)(2^x)=2^x
(1-y)2^x=y
2^x=y/(1-y)
x=log(2)[y/(1-y)]
得反函数是:
y=log(2)[x/(1-x)] (0<x<1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式