点x=0是函数f(x)=cos²(1/x)的什么间断点,要间断点的名称,比如跳跃,无穷什么的?

 我来答
轮看殊O
高粉答主

2021-09-27 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:739万
展开全部

如下:

1、点x=0是函数f(x)=cos²(1/x)的振荡间断点。

2、因为在点x=0是函数f(x)=cos²(1/x)极限不存在,但函数值在0与1之间变化取值,由间断点的定义知,是振荡间断点。

3、振荡间断点,属于第二类间断点

函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。

设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:

(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。

(2)函数f(x)在点x0的左右极限中至少有一个不存在。

(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。

则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

匿名用户
2020-01-07
展开全部


点x=0是函数f(x)=cos²(1/x)的什么间断点,要
间断点的名称,比如跳跃,无穷什么的:
1、点x=0是函数f(x)=cos²(1/x)的振荡间断点。
2、因为在点x=0是函数f(x)=cos²(1/x)极限不存在,但函数值在0与1之间变化取值,由间断点的定义知,是振荡间断点。
3、振荡间断点,属于第二类间断点。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-07-25 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1581万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2020-01-07 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67425

向TA提问 私信TA
展开全部
x→0时(1/x)→±∞;cos²(1/x)在0—1之间来回无休止的振荡。
因此x=0是该函数的振荡型间断点,选A。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式