已知等边三角形ABC的边长为6,点D是边BC上的一个动点,折叠△ABC,使得点A恰好与边BC上的点D重合。 50

已知等边三角形ABC的边长为6,点D是边BC上的一个动点,折叠△ABC,使得点A恰好与边BC上的点D重合。折痕为EF(点E、F分别在边AB、AC上)(1)当AE:AF=5... 已知等边三角形ABC的边长为6,点D是边BC上的一个动点,折叠△ABC,使得点A恰好与边BC上的点D重合。折痕为EF(点E、F分别在边AB、AC上)(1)当AE:AF=5:4时,求BD的长;(2)当ED⊥BC时,求EB/EF的值(3)当以B、E、D为顶点的三角形与△DEF相似,求BE的长 展开
 我来答
wenxindefeng6
高赞答主

推荐于2018-03-20 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:6175万
展开全部

解:(1)设AE=DE=5x,则AF=DF=4x,BE=6-5x,CF=6-4x.

∵∠EDF=∠A=60°.

∴∠CDF+∠BDE=∠BED+∠BDE=120°,则∠CDF=∠BED;

又∠C=∠B=60°.故⊿DCF∽⊿EBD,CD/BE=DF/ED.

CD/(6-5x)=4x/5x=4/5,CD=24/5-4x.

作DM垂直CA于M,∠CDM=30°,则CM=CD/2=12/5-2x,DM=√3CM=12√3/5-2√3x.

FM=CF-CM=18/5-2x.因FM²+DM²=DF²,即(18/5-2x)²+(12√3/5-2√3x)²=(4x)².

解得:x=7/10.则CD=24/5-4*(7/10)=2,BD=BC-CD=4.

(2)作AH垂直BC于H,则BH=3,AH=3√3;又ED垂直BC.

∴⊿BDE∽⊿BHA,DE/HA=BE/BA,AE/(3√3)=(6-AE)/6,AE=12√3-18=DE;

∠BED=30°,可得:BD=12-6√3,BE=24-12√3;CD=6√3-6.

∵∠CDF=∠BED=30°,则DF垂直AC.

∴CF=CD/2=3√3-3,DF=√3CF=9-3√3.

又∠EDF=∠EAF=60°,作EN垂直DF于N,则DN=DE/2=6√3-9,NF=DF-DN=18-9√3;

EN=√3DN=18-9√3,故EF=√2NF=18√2-9√6.得BE/EF=(24-12√3)/(18√2-9√6)=(2√2)/3.

(3)∵∠B=∠EDF=60°;若⊿BED与⊿DEF相似.

∴∠BED=∠DFE或∠BED=∠DEF.

①当∠BED=∠DFE时,又⊿EBD∽⊿DCF,∠BED=∠CDF.

∴∠DFE=∠CDF,则EF平行BC;又EF垂直平分AD,故E为AB中点,BE=BA/2=3;

②当∠BED=∠DEF时,又∠DEF=∠AEF.

∴∠BED=∠DEF=∠AEF=60°,则EF平分BC,同样可得E为AB中点,BE=BA/2=3.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式