几道初二数学题(写出详细解答过程)
展开全部
1、解:延长BE到G,使EG=BC,连FG.∵AF=BE,△ABC为等边三角形,
∴BF=BG,∠ABC=60°,
∴△GBF也是等边三角形.在△BCF和△GEF中,
∵BC=EG,∠B=∠G=60°,BF=FG,
∴△BCF≌△GEF,
∴FC=EF,
∴∠FCE=∠FEC.
2、解:∵∠BAC=105°,
根据三角形内角和等于180°可得:∠ABP+∠ACQ=180°-105°=75°,
∵MP、NQ分别垂直平分AB和AC,
∴PB=PA,QC=QA.
根据线段垂直平分线的性质知∠PAB=∠ABP,∠QAC=∠ACQ,
∴∠PAB+∠QAC=∠ABP+∠ACQ=75°,
∴∠PAQ=105°-75°=30°.
3、BE=CF。理由:
∵AB=AC,
∴∠B=∠C.
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD.
又∵BE=CF,
∴△BDE≌△CDF(ASA).
∴DE=DF.
∴BF=BG,∠ABC=60°,
∴△GBF也是等边三角形.在△BCF和△GEF中,
∵BC=EG,∠B=∠G=60°,BF=FG,
∴△BCF≌△GEF,
∴FC=EF,
∴∠FCE=∠FEC.
2、解:∵∠BAC=105°,
根据三角形内角和等于180°可得:∠ABP+∠ACQ=180°-105°=75°,
∵MP、NQ分别垂直平分AB和AC,
∴PB=PA,QC=QA.
根据线段垂直平分线的性质知∠PAB=∠ABP,∠QAC=∠ACQ,
∴∠PAB+∠QAC=∠ABP+∠ACQ=75°,
∴∠PAQ=105°-75°=30°.
3、BE=CF。理由:
∵AB=AC,
∴∠B=∠C.
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD.
又∵BE=CF,
∴△BDE≌△CDF(ASA).
∴DE=DF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询