图示不定积分怎么求
2个回答
展开全部
let
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2)]
=∫(π/4->π/3) (secu)^2 du/[(tanu)^2.secu]
=∫(π/4->π/3) [(secu)/(tanu)^2] du
=∫(π/4->π/3) [ cosu/(sinu)^2] du
=∫(π/4->π/3) dsinu/(sinu)^2
= -[1/sinu]|(π/4->π/3)
=√2 - (2/3)√3
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2)]
=∫(π/4->π/3) (secu)^2 du/[(tanu)^2.secu]
=∫(π/4->π/3) [(secu)/(tanu)^2] du
=∫(π/4->π/3) [ cosu/(sinu)^2] du
=∫(π/4->π/3) dsinu/(sinu)^2
= -[1/sinu]|(π/4->π/3)
=√2 - (2/3)√3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询