2个回答
展开全部
具体回答如下:
cos(sinx)
= cos[x -(1/6)x^3 +o(x^4)]
= 1 - (1/2)[x -(1/6)x^3]^2 + (1/24)[x -(1/6)x^3]^4 +o(x^4)
= 1 - (1/2)[x^2 -(1/3)x^4 +o(x^4)]+ (1/24)[x^4+o(x^4)] +o(x^4)
=1- (1/2)x^2 + ( 1/6 +1/24) x^4 +o(x^4)
=1- (1/2)x^2 + (5/24) x^4 +o(x^4)
等价无穷小的意义:
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
展开全部
sinx = x -(1/6)x^3 +o(x^4)
cos(sinx)
= cos[x -(1/6)x^3 +o(x^4)]
= 1 - (1/2)[x -(1/6)x^3]^2 + (1/24)[x -(1/6)x^3]^4 +o(x^4)
= 1 - (1/2)[x^2 -(1/3)x^4 +o(x^4)]+ (1/24)[x^4+o(x^4)] +o(x^4)
=1- (1/2)x^2 + ( 1/6 +1/24) x^4 +o(x^4)
=1- (1/2)x^2 + (5/24) x^4 +o(x^4)
cos(sinx)
= cos[x -(1/6)x^3 +o(x^4)]
= 1 - (1/2)[x -(1/6)x^3]^2 + (1/24)[x -(1/6)x^3]^4 +o(x^4)
= 1 - (1/2)[x^2 -(1/3)x^4 +o(x^4)]+ (1/24)[x^4+o(x^4)] +o(x^4)
=1- (1/2)x^2 + ( 1/6 +1/24) x^4 +o(x^4)
=1- (1/2)x^2 + (5/24) x^4 +o(x^4)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |