一元二次方程根与系数关系
如图,书上给出的答案是D。我的问题是,M和N两个方程的两根乘积c/a恒等于-1,两根肯定是异号。所以,B选项所谓的“两根符号相同”情况不会出现。我的理解正确吗?...
如图,书上给出的答案是D。我的问题是,M和N两个方程的两根乘积c/a恒等于-1,两根肯定是异号。所以,B选项所谓的“两根符号相同”情况不会出现。我的理解正确吗?
展开
3个回答
展开全部
根与系数的关系一般指的是一元二次方程ax_+bx+c=0的两个根x1,x2与系数的关系。即x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。
根与系数的关系简单相关系数:又叫相关系数或线性相关系数。它一般用字母r表示。它是用来度量定量变量间的线性相关关系。复相关系数:又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关系。
根与系数的关系,又称韦达定理。所谓的韦达定理是指一元二次方程根和系数之间的关系。
一个一元二次方程的根可由求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。
根与系数的关系简单相关系数:又叫相关系数或线性相关系数。它一般用字母r表示。它是用来度量定量变量间的线性相关关系。复相关系数:又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关系。
根与系数的关系,又称韦达定理。所谓的韦达定理是指一元二次方程根和系数之间的关系。
一个一元二次方程的根可由求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询