非监督分类

 我来答
中地数媒
2020-01-16 · 技术研发知识服务融合发展。
中地数媒
中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命
向TA提问
展开全部

非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据遥感影像地物的光谱特征的分布规律,依据图像数据本身的结构 ( 统计特征) 和自然点群分布,按照待分样本在多维波谱空间中亮度值向量的相似程度,由计算机程序自动总结出分类参数,即自然聚类的特性进行 “盲目”的分类。其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性。其类别的属性是通过分类结束后目视判读或实地调查确定的。非监督分类也称聚类 ( 集群) 分析,使用的方法有图形识别、系统聚类、分裂法和动态聚类等。

其中,比较实用的是动态聚类。它是首先根据经验和分类数,选定若干个均值向量,作为 “种子”,建立一批初始中心,进行初步概略的分类,然后根据规定的参数 ( 阈值)检验分类结果,逐步修改调整分类中心,再重新分类,并根据各类离散性统计量 ( 如均方差等) 和不同类别之间可分离性统计量 ( 如类间标准化距离等) ,进行类的合并或分裂; 此后再修改中心,直至分类结果合理为止。动态聚类中,聚类中心和分类数可以按客观的波谱特征自动调整,分类效果一般比较好,但分类结果的确切含义 ( 类别的属性)需另作分析,从实况调查或已有的地面资料中去确定它们的地物类型。以下以 ISODATA法和 K - Means 法为例,给出其处理过程。

1. ISODATA 方法

ISODATA 也称迭代自组织数据分析算法,实质是在分类过程中不断对分类参数 ( 如各类别的均值、标准差、类间距离等) 进行调整和确定,通过类分裂、类合并、类删除等方法最终构建所需的判别函数。ISODATA 法的实现主要包括以下步骤 ( 图 4-23) :

( 1) 确定最初类别数和类别中心。最初类别数和类别中心的确定具有较大的随意性,因无先验知识,只能在以后逐步调整。一般可依据原始数据的统计分布特征进行确定。

( 2) 计算每一个像元矢量与各类别中心的距离,将像元矢量归属于距离最小的类别。

( 3) 计算新的类别均值向量。

( 4) 判断新的类别中心是否变化。

( 5) 当新的类别中心发生变化时,以新均值代替旧中心,回到步骤 ( 2) 继续迭代循环; 当新的类别中心不再变化时则停止迭代,输出分类结果。

2. K - Means 方法

K - Means 方法的基本思想是通过迭代移动各基准类别 ( 初始类别) 的中心直至取得最好的聚类结果,分类时新的类别中心的确定是根据该类别内所有像元到类别中心的距离平方和之和最小这一原则。这一原则与 ISODATA 方法并无本质区别。

非监督分类由于事先不需训练样本,故处理速度较快,较客观,并能为监督分类的训练样区选择提供参照,一般在有目的的监督分类之前进行。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式