
如图所示,平行四边形ABCD中,AD=2AB,EA=AB=BF,求证;CE垂直于DF。
展开全部
分析:因为∠ADC与∠BCD是同旁内角且互补,要求CE⊥DF,可先求DF、CE分别平分∠ADC和∠BCD.解答:证明:∵AD=2AB,AB=BF,
∴AD=AF,∠3=∠F.
∵四边形ABCD是平行四边形,
∴DC∥AB,AD∥BC.
∴∠1=∠F.
∴∠1=∠3.
同理,∠2=∠4.
∵∠1+∠2+∠3+∠4=180°.
∴∠1+∠2=90°.
∴CE⊥DF.
∴AD=AF,∠3=∠F.
∵四边形ABCD是平行四边形,
∴DC∥AB,AD∥BC.
∴∠1=∠F.
∴∠1=∠3.
同理,∠2=∠4.
∵∠1+∠2+∠3+∠4=180°.
∴∠1+∠2=90°.
∴CE⊥DF.

2024-10-28 广告
上海科颐维电子科技有限公司是中国区授权代理商,主要致力于高端低能X射线器件的开发,设计与制造。产品是X射线类仪器的核心部件,广泛应用于荧光分析领域、X射线成像领域、厚度测量、密度测量、以及其他相关X射线领域。科颐维电子深耕X射线行业二十余载...
点击进入详情页
本回答由科颐维提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询