高数极限62道经典例题?
2019-11-19 · 知道合伙人教育行家
关注
展开全部
由对称性可得,
S=4∫(0-->2)(4 - x²)dx
=4x - 1/3 * x³ | (0-->2)
=16/3,
Vy=2∫(0-->4) π(√y)² dy
=πy² | (0-->4)
=16π。
S=4∫(0-->2)(4 - x²)dx
=4x - 1/3 * x³ | (0-->2)
=16/3,
Vy=2∫(0-->4) π(√y)² dy
=πy² | (0-->4)
=16π。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^2
y=-x^2 +8
(1)
x^2=-x^2+8
x=2 or -2
A
=∫(-2->2) [ (-x^2 +8) -x^2] dx
=∫(-2->2) (8- 2x^2 ) dx
=[ 8x -(2/3)x^3] |(-2->2)
=32 - 32/3
=64/3
(2)
y=x^2
y=-x^2 +8
y= -y +8
y=4
Vy
=π ∫(0->4) y dy + π ∫(4->8) (8-y) dy
=(1/2)π [y^2]|(0->4) -(1/2)π[ (8-y)^2]|(4->8)
=8π +8π
=16π
y=-x^2 +8
(1)
x^2=-x^2+8
x=2 or -2
A
=∫(-2->2) [ (-x^2 +8) -x^2] dx
=∫(-2->2) (8- 2x^2 ) dx
=[ 8x -(2/3)x^3] |(-2->2)
=32 - 32/3
=64/3
(2)
y=x^2
y=-x^2 +8
y= -y +8
y=4
Vy
=π ∫(0->4) y dy + π ∫(4->8) (8-y) dy
=(1/2)π [y^2]|(0->4) -(1/2)π[ (8-y)^2]|(4->8)
=8π +8π
=16π
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |