设双曲线C:x^2/a^2-y^2=1(a>0)与直线l:x+y=1相交于两个不同的点A.B,求双曲线的离心率的取值范围
展开全部
由x^2/a^2-y^2=1得c^2=a^2+1,故双曲线的离心率e=[根号(a^2+1)]/a,由此得a^2=1/(e^2-1)
所以双曲线的方程变形为(e^2-1)x^2-y^2=1,将y=1-x代入上述方程即得:
(e^2-2)x^2+2x-2=0…………………………………………………………(1)
由于双曲线与直线相交于两个不同的点A,B,所以方程(1)有两个不同的实数根,故其判别式
4+4(e^2-2)*2>0,由此得(√6/2,√2)∪(√2,+∞)
所以双曲线的方程变形为(e^2-1)x^2-y^2=1,将y=1-x代入上述方程即得:
(e^2-2)x^2+2x-2=0…………………………………………………………(1)
由于双曲线与直线相交于两个不同的点A,B,所以方程(1)有两个不同的实数根,故其判别式
4+4(e^2-2)*2>0,由此得(√6/2,√2)∪(√2,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询