2个回答
展开全部
5x 若是乘以分式,则乘在分子上,
I = ∫5xdx/(x^2+4) = (5/2)∫d(x^2+4)/(x^2+4) = (5/2)ln(x^2+4) + C.
5x 若是乘在分母上,
1/[5x(x^2+4)] = (1/5)(1/4)[1/x - x/(x^2+4)] = (1/20)[1/x - x/(x^2+4)]
I = ∫dx/[5x(x^2+4)] = (1/20)∫[1/x - x/(x^2+4)]dx
= (1/20)[ln|x| - (1/2)ln(x^2+4)] + C = (1/40)ln[x^2/(x^2+4)] + C
I = ∫5xdx/(x^2+4) = (5/2)∫d(x^2+4)/(x^2+4) = (5/2)ln(x^2+4) + C.
5x 若是乘在分母上,
1/[5x(x^2+4)] = (1/5)(1/4)[1/x - x/(x^2+4)] = (1/20)[1/x - x/(x^2+4)]
I = ∫dx/[5x(x^2+4)] = (1/20)∫[1/x - x/(x^2+4)]dx
= (1/20)[ln|x| - (1/2)ln(x^2+4)] + C = (1/40)ln[x^2/(x^2+4)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询