如图,AB是圆O的直径 C为圆O上一点,AD和过C点的切线互相垂直,垂足为D

求证:AC平分∠DAB若CD=4,AD=8,试求圆O的半径... 求证:AC平分∠DAB
若CD=4,AD=8,试求圆O的半径
展开
海语天风001
高赞答主

推荐于2017-11-24 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8061万
展开全部
1、证明:连接OC
∵CD切圆O于C
∴OC⊥CD
∵AD⊥CD
∴OC∥AD
∴∠DAC=∠OCA
∵OC=OA
∴∠BAC=∠OCA
∴∠DAC=∠BAC
∴AC平分∠DAB
2、解:连接BC
∵AB为圆O直径
∴∠ACB=90
∵AD⊥CD
∴∠ADC=90
∴∠ACB=∠ADC
∵∠DAC=∠BAC
∴△ADC相似于△ACB
∴AB/AC=AC/AD
∴AB=AC²/AD
∵AD=8,CD=4, AD⊥CD
∴AC²=AD²+CD²=64+16=80
∴AB=80/8=10
∴AB/2=5
∴圆O的半径为5
创远信科
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创... 点击进入详情页
本回答由创远信科提供
11快乐男孩11
2013-04-09 · TA获得超过525个赞
知道答主
回答量:202
采纳率:0%
帮助的人:58.2万
展开全部
(1)证明:如图,连接OC,
∵DC切⊙O于C,
∴OC⊥CF,
∴∠ADC=∠OCF=90°,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,即AC平分∠BAD.
(2)解:连接BC.
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,

AC
AB
=
AD
AC

在Rt△ADC中,AC=2
5
,CD=2,
∴AD=4,

25
AB
=
4
25

∴AB=5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式