高一数学定理有哪些
1个回答
展开全部
在三角形abc中
a=2r*sina,b=2r*sinb
(a^2+b^2)*sin(a-b)=(a^2-b^2)*sin(a+b)
(a^2+b^2)*(sina*cosb-cosa*sinb)=(a^2-b^2)*(sina*cosb+cosa*sinb)
b^2*
sina*cosb=a^2*cosa*sinb
(2r*sinb)^2*
sina*cosb=(2r*sina)^2*cosa*sinb
sina≠0,sinb≠0
2sinb*cosb=2sina*cosa
sin(2a)-sin(2b)=0
2cos(a+b)*sin(a-b)=0
cos(a+b)=0,a+b=90°,△abc为c=90°的直角△
sin(a-b)=0,a=b,△abc为底角∠a=∠b的等腰三角形。
答:△abc为c=90°的直角△,或者底角∠a=∠b的等腰三角形,或者底角
∠a=∠b=45°,c=90°的等腰直角三角形。
cosb=cosc,∠b=∠c
3b=2√3asinb,用正弦定理,两边消去2r,3sinb=2√3sinasinb
sina=√3/2,a=60°,120°
a=60,b=c=60°
a=120,b=c=30°
a=2r*sina,b=2r*sinb
(a^2+b^2)*sin(a-b)=(a^2-b^2)*sin(a+b)
(a^2+b^2)*(sina*cosb-cosa*sinb)=(a^2-b^2)*(sina*cosb+cosa*sinb)
b^2*
sina*cosb=a^2*cosa*sinb
(2r*sinb)^2*
sina*cosb=(2r*sina)^2*cosa*sinb
sina≠0,sinb≠0
2sinb*cosb=2sina*cosa
sin(2a)-sin(2b)=0
2cos(a+b)*sin(a-b)=0
cos(a+b)=0,a+b=90°,△abc为c=90°的直角△
sin(a-b)=0,a=b,△abc为底角∠a=∠b的等腰三角形。
答:△abc为c=90°的直角△,或者底角∠a=∠b的等腰三角形,或者底角
∠a=∠b=45°,c=90°的等腰直角三角形。
cosb=cosc,∠b=∠c
3b=2√3asinb,用正弦定理,两边消去2r,3sinb=2√3sinasinb
sina=√3/2,a=60°,120°
a=60,b=c=60°
a=120,b=c=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询