初2数学题,速度求解
已知:CP是等边△ABC的外角∠ACE的平分线,点D在射线BC上,以D为顶点,DA为一条边作∠ADF=60°,另一边交射线CP于F,求AD=FD问题是若点D在线段BC上,...
已知:CP是等边△ABC的外角∠ACE的平分线,点D在射线BC上,以D为顶点,DA为一条边作∠ADF=60°,另一边交射线CP于F,求AD=FD
问题是若点D在线段BC上,求AD=FD,事实上还有个第一小题,求∠BAD=∠CDF,我解出来了 展开
问题是若点D在线段BC上,求AD=FD,事实上还有个第一小题,求∠BAD=∠CDF,我解出来了 展开
3个回答
展开全部
在AB上取AP=CD
△ABC是等边三角形,所以AB=BC,且∠ABC=60
因此在△PBD中,BP=AB-AP,BD=BC-CD。所以BP=BD
因此△PBD是等边三角形,∠BPD=60
CF为△ABC外角平分线,所以∠ACF=60。∠DCF=120
∠APD=180-∠BPD=120
因此∠APD=∠DCF。
∠ADF=60,所以∠BDA+∠FDC=120;
∠ABC=60,所以∠BDA+∠DAP=120
因此∠DAP=∠FDC
在△PAD和△CDF中,
∠APD=∠DCF,
AP=CD,
∠DAP=∠FDC。
所以,△PAD≌△CDF。AD=DF
顺便说一下,你没有画错。在射线BC上的说法表示,以B为端点,向C方向延伸。包括线段BC上的部分。楼上同学要好好学习
△ABC是等边三角形,所以AB=BC,且∠ABC=60
因此在△PBD中,BP=AB-AP,BD=BC-CD。所以BP=BD
因此△PBD是等边三角形,∠BPD=60
CF为△ABC外角平分线,所以∠ACF=60。∠DCF=120
∠APD=180-∠BPD=120
因此∠APD=∠DCF。
∠ADF=60,所以∠BDA+∠FDC=120;
∠ABC=60,所以∠BDA+∠DAP=120
因此∠DAP=∠FDC
在△PAD和△CDF中,
∠APD=∠DCF,
AP=CD,
∠DAP=∠FDC。
所以,△PAD≌△CDF。AD=DF
顺便说一下,你没有画错。在射线BC上的说法表示,以B为端点,向C方向延伸。包括线段BC上的部分。楼上同学要好好学习
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询