如图,已知AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF
如图,已知AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF、AF相交于点P、M。若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系...
如图,已知AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF、AF相交于点P、M。若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系。
展开
7个回答
2013-01-04
展开全部
相等
∵AF平分∠BAC,BC⊥AF
∴AB=AC
∴MB=MC
∵点D与点A关于点E对称
∴DE=AE
∴DC=AC
∠AMC=∠AMB=∠PMF
∠PMF+∠F=∠MPC=∠CAD=∠CDA=∠AMC+∠MCD
∴∠F=∠MCD
写得简单点,自己理会吧
∵AF平分∠BAC,BC⊥AF
∴AB=AC
∴MB=MC
∵点D与点A关于点E对称
∴DE=AE
∴DC=AC
∠AMC=∠AMB=∠PMF
∠PMF+∠F=∠MPC=∠CAD=∠CDA=∠AMC+∠MCD
∴∠F=∠MCD
写得简单点,自己理会吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∠F=∠MCD,
理由是:∵AF平分∠BAC,BC⊥AF,
∴∠CAE=∠BAE,∠AEC=∠AEB=90°,
在△ACE和△ABE中
∵∠AEC=∠AEBAE=AE∠CAE=∠BAE,
∴△ACE≌△ABE(ASA)
∴AB=AC,
∵∠CAE=∠CDE
∴AM是BC的垂直平分线,
∴CM=BM,CE=BE,
∴∠CMA=∠BMA,
∵AE=ED,CE⊥AD,
∴AC=CD,
∴∠CAD=∠CDA,
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∴∠MPF=∠CDM(等角的补角相等),
∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,
又∵∠PMF=∠BMA=∠CMD,
∴∠MCD=∠F.
理由是:∵AF平分∠BAC,BC⊥AF,
∴∠CAE=∠BAE,∠AEC=∠AEB=90°,
在△ACE和△ABE中
∵∠AEC=∠AEBAE=AE∠CAE=∠BAE,
∴△ACE≌△ABE(ASA)
∴AB=AC,
∵∠CAE=∠CDE
∴AM是BC的垂直平分线,
∴CM=BM,CE=BE,
∴∠CMA=∠BMA,
∵AE=ED,CE⊥AD,
∴AC=CD,
∴∠CAD=∠CDA,
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∴∠MPF=∠CDM(等角的补角相等),
∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,
又∵∠PMF=∠BMA=∠CMD,
∴∠MCD=∠F.
参考资料: http://www.jyeoo.com/math/ques/detail/2fe00fee-7c93-43d8-a60c-7bd91fa58240
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
角平分线和高不能直接证出等腰三角形
要先证△ABE=△DCE
CE=BE
AF垂直平分BC
MB=MC
要先证△ABE=△DCE
CE=BE
AF垂直平分BC
MB=MC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:∠F=∠MCD,理由如下:
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询