∫[(x-1)^(1/2)]/x dx 求详细解
1个回答
展开全部
方法1:
令u = √(x - 1),du = 1/[2√(x - 1)] dx
∫ √(x - 1)/x dx
= 2∫ u²/(u² + 1) du
= 2∫ (u² + 1 - 1)/(u² + 1) du
= 2∫ du - 2∫ du/(u² + 1)
= 2u - 2arctan(u) + C
= 2√(x - 1) - 2arctan√(x - 1) + C
方法2:
令x = sec²y,dx = 2secy secytany dy
∫ √(x - 1)/x dx
= ∫ tany/sec²y * 2sec²y tany dy
= 2∫ tan²y dy
= 2∫ (sec²y - 1) dy
= 2tany - 2y + C
= 2√(x - 1) - 2arcsec√x + C
令u = √(x - 1),du = 1/[2√(x - 1)] dx
∫ √(x - 1)/x dx
= 2∫ u²/(u² + 1) du
= 2∫ (u² + 1 - 1)/(u² + 1) du
= 2∫ du - 2∫ du/(u² + 1)
= 2u - 2arctan(u) + C
= 2√(x - 1) - 2arctan√(x - 1) + C
方法2:
令x = sec²y,dx = 2secy secytany dy
∫ √(x - 1)/x dx
= ∫ tany/sec²y * 2sec²y tany dy
= 2∫ tan²y dy
= 2∫ (sec²y - 1) dy
= 2tany - 2y + C
= 2√(x - 1) - 2arcsec√x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询