几道微积分的题,比较迷惑恳请大神解答!!

 我来答
基拉的祷告hyj
高粉答主

2020-10-18 · 科技优质答主
个人认证用户
基拉的祷告hyj
采纳数:7226 获赞数:8148

向TA提问 私信TA
展开全部

完整详细过程如图rt

toongci
2020-10-19 · TA获得超过1193个赞
知道小有建树答主
回答量:3629
采纳率:49%
帮助的人:411万
展开全部
1.∫(x+1)/(x²+4x+4) dx
=∫(x+2–1)/(x²+4x+4) dx
=∫(x+2)/(x²+4x+4)dx–∫dx/(x²+4x+4)
=∫dx/(x+2)–∫dx/(x+2)²
=ln|x+2|+1/(x+2)+C
2.∫(2x+3)/(x²+2x+2) dx
=∫(2x+2+1)/(x²+2x+2) dx
=∫(2x+2)/(x²+2x+2) dx+∫dx/(x²+2x+2)
=∫1/(x²+2x+2) d(x²+2x+2) +∫dx/[(x+1)²+1]
=ln(x²+2x+2)+arctan(x+1)+C
3.∫(x–2)dx/[(x+2)(x²–x+1)]
=∫[–4/7(x²–x+1)+(4/7 x–5/7)(x+2)]dx/[(x+2)(x²–x+1)]
=–4/7 ∫dx/(x+2)+1/7 ∫(4x–5)dx/(x²–x+1)
=–4/7∫dx/(x+2)+1/7 ∫(4x–2–3)dx/(x²–x+1)
=–4/7∫dx/(x+2)+2/7∫(2x–1)dx/(x²–x+1)–3/7∫dx/[(x–1/2)²+(∨3/2)²]
=–4/7 ln|x+2|+2/7 ln(x²–x+1)–2∨3/7 arctan[(2x–1)/∨3] +C

附:
令(x–2)/[(x+2)(x²–x+1)]=a/(x+2)+(bx+c)/(x²–x+1)
则ax²–ax+a+bx²+cx+2bx+2c=x–2
a+b=0,2b+c–a=0,a+2c=–2
c=–5/7
a=–4/7
b=4/7
所以(x–2)/[(x+2)(x²–x+1)]
=–4/7 · 1/(x+2)+(4/7 x–5/7)/(x²–x+1)

函数f(x)求导后会出现分式的,最常见的几种情况
①f(x)=m·(g(x))^a + C (a为负整数),
← → f'(x)=a·m·g'(x)/[g(x)]^(1–a)
②f(x)=m·ln|g(x)| + C, ← →f'(x)=[m·g'(x)]/g(x)
③f(x)=m·arctan[g(x)]+C,←→ f'(x)=m·g'(x) /[1+(g(x))²]
(m为常数)
在求被积函数是分式形式的不定积分的时候,可以将被积函数试着进行上面几种形式进行拆分。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wigiq
2020-10-19 · TA获得超过628个赞
知道小有建树答主
回答量:1832
采纳率:67%
帮助的人:130万
展开全部

1).分子变为x+2-1

原式=∫1/(x+2)-1/(x+2)²dx=ln|x+2|+1/(x+2)+c

2).分子变为2x+2+1,2x+2dx=x²+2x+2原式=∫(2x+2)/(x²+2x+2)+1/((x+1)²+1)dx=ln(x²+2x+2)+arctan(x+1)+c

3).可以设原被积函数=A(2x-1)/(x²-x+1)+B/(x+2)+C/(x²-x+1)

原积分=Aln(x²-x+1)+Bln|x+2|+2/√3*C*arctan((2x-1)/√3)+c

用待定系数法求出A=2/7,B=-4/7,C=-3/7即可求出原函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-19 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25153

向TA提问 私信TA
展开全部

详情如图所示

有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式