2个回答
展开全部
1
z=a+bi,z+2/z为实数
a+bi+2/(a+bi)
=a+bi+[2/(a^2+b^2)](a-bi)
b-2b/(a^2+b^2)=0
a^2+b^2=2
|z|=√2
2
z=a+√(2-a^2)i
(z+1)/(z-1)=[(a+1)+√(2-a^2)i]/[(a-1)+√(2-a^2)i]
=[(a+1)+√2-a^2)i][(a-1)-√(2-a^2)i]/[(a-1)^2+(2-a^2)]
=[(a+1)(a-1)+2√(2-a^2)i+(2-a^2)]/(3-2a)
=[1+2√(2-a^2)i]/(3-2a)
1/(3-2a)^2+4√(2-a^2)^2/(3-2a)^2=1
1+4(2-a^2)=(3-2a)^2
9-4a^2=9-6a+4a^2
8a^2-6a=0
2a(4a-3)=0
a=0,b=±√2 或 a=3/4, b=±√23/4
z=±√2i z=(3/4)±(√23/4)i
z=a+bi,z+2/z为实数
a+bi+2/(a+bi)
=a+bi+[2/(a^2+b^2)](a-bi)
b-2b/(a^2+b^2)=0
a^2+b^2=2
|z|=√2
2
z=a+√(2-a^2)i
(z+1)/(z-1)=[(a+1)+√(2-a^2)i]/[(a-1)+√(2-a^2)i]
=[(a+1)+√2-a^2)i][(a-1)-√(2-a^2)i]/[(a-1)^2+(2-a^2)]
=[(a+1)(a-1)+2√(2-a^2)i+(2-a^2)]/(3-2a)
=[1+2√(2-a^2)i]/(3-2a)
1/(3-2a)^2+4√(2-a^2)^2/(3-2a)^2=1
1+4(2-a^2)=(3-2a)^2
9-4a^2=9-6a+4a^2
8a^2-6a=0
2a(4a-3)=0
a=0,b=±√2 或 a=3/4, b=±√23/4
z=±√2i z=(3/4)±(√23/4)i
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询