求dy/dx+y/x=1,当x=2^1/2,y=0时的特解=?

 我来答
候虎端家馨
2020-07-15 · TA获得超过1176个赞
知道小有建树答主
回答量:2000
采纳率:100%
帮助的人:9.5万
展开全部
求dy/dx+y/x=1,当x=√2,y=0时的特解
令y/x=u,则y=ux.(1);对x取导数得dy/dx=u+x(du/dx),代入原式得:
u+x(du/dx)+u=1,即有x(du/dx)=1-2u;分离变量得du/(1-2u)=dx/x;
取积分 -(1/2)∫d(1-2u)/(1-2u)=∫dx/x
积分之得 -(1/2)ln(1-2u)=lnx,即有ln(1-2u)=ln(1/x²);
故得1-2u=1/x²,u=(1/2)(1-1/x²)=(x²-1)/(2x²);
代入(1)式得通解y=(x²-1)/(2x)+C.(2),将初始条件代入得1/(2√2)+C=0,故C=-(√2)/4;
代入(2)式即得特解y=(x²-1)/(2x)-(√2)/4.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式