求和:1/1×3+1/2×4+1/3×5+…+1/n(n+2) 我来答 1个回答 #热议# 在购买新能源车时,要注意哪些? 解乃束天和 2020-01-09 · TA获得超过1218个赞 知道小有建树答主 回答量:1379 采纳率:100% 帮助的人:6.1万 我也去答题访问个人页 关注 展开全部 因为1/n(n+2)=1/2*[1/n-1/(n+2)] 所以 1/1×3+1/2×4+1/3×5+……1/n(n+2), =1/2*[1-1/3+1/2-1/4+1/3-1/5+.+1/(n-1)-1/(n+1)+1/n-1/(n+2)] =1/2*[1+1/2-1/(n+1)-1/(n+2)] =3/4-1/2(n+1)-1/2(n+2) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容【word版】新高一数学的知识点专项练习_即下即用新高一数学的知识点完整版下载,海量试题试卷,全科目覆盖,随下随用,简单方便,即刻下载,试卷解析,强化学习,尽在百度教育www.baidu.com广告初中各科视频高中人教版数学必修5视频教学视频_注册免费学同步教材——新学期复习预习——轻松掌握——高中人教版数学必修5视频教学视频简单一百,注册免费学,高中人教版数学必修5视频教学视频初中各科视频,网课资源!vip.jd100.com广告2024精选高中数学必考知识点_【完整版】.docwww.163doc.com查看更多 其他类似问题 2020-01-09 求和:1+(1/1+2)+1/1+2+3)+......+(1/1+2+3+.....+n) 9 2022-03-11 1+1/2²+1/3²+……+1/ n²求和 6 2022-05-30 求和:1/(√2 +1)+1/(√3 +√2)+1/(√4 +√5)+…+1/(√n+1 +√n) 2019-08-23 1²+2²+3²+……+n²的n项求和 79 2016-07-16 求和1²+2²+3²+……+(n-1)² 和1²+2²+3²+……+n² 14 2020-09-04 1,2²,3²,n²求和 2020-06-06 求和2²+3²+....n² 5 2011-03-19 求和:1/2²-1 + 1/3²-1 +1/4²-1 + … + 1/n²-1 (n≥2) 2 为你推荐: