高阶线性微分方程的特征方程怎么来的?
展开全部
二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号。
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];
偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询