为什么级数 ∑ 1/[nln(n)] 发散?

 我来答
休闲娱乐助手之星M
2021-10-15 · TA获得超过53.8万个赞
知道大有可为答主
回答量:2857
采纳率:100%
帮助的人:112万
展开全部

解析如下:

数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。

19世纪前,欧拉以及其他数学家广泛地应用发散级数,但经常引出令人困惑与矛盾的结果。其中,主要的问题是欧拉的思想,即每个发散级数都应有一个自然的和,而无需事先定义发散级数的和的含义。柯西最终给出了(收敛)级数的和的严格定义,从这过后的一段时间,发散级数基本被排除在数学之外了。

直到1886年,它们才在庞加莱关于渐进级数的工作中再次出现。在1890年,切萨罗意识到可以对一类发散级数的和给出严格定义,从而定义了切萨罗和。

(这并不是第一次应用到切萨罗和,弗罗贝尼乌斯在1880年曾经使用过;切萨罗关键的贡献并不是发现了这个可和法,而是由于他认为“应当给出发散级数和的精确定义”的思想。)

在切萨罗的论文发表的后一年,其他的一些数学家陆续给出了发散级数和的其他定义,不过这些定义并不总是相容的:不同的定义可能对相同的发散级数给出不同的和。所以,当提及发散级数的和时,需要具体指明所使用的是哪个可和法,尽管大部分常用的可和法某种意义上是彼此相容的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式