高数中隐函数求偏导问题

我对这个式子有疑问1.比如Fx'为什么不是=-fx',而是-f’2.为什么Fy'不是=1-f'(或者1-fy'?)针对以上问题,因为我觉得我至始至终不知道f(x-mz)与... 我对这个式子有疑问1. 比如 Fx'为什么不是=-fx',而是-f’2. 为什么Fy'不是=1-f'(或者1-fy'?)针对以上问题,因为我觉得我至始至终不知道f(x-mz)与y是否有关啊,学渣真急了,求大佬解释~ 展开
 我来答
匿名用户
2021-02-21
展开全部


1.关于高数中隐函数求偏导数问题,其过程见上图。

2.此题不属于隐函数求偏导问题,是显函数一般的求偏导问题。x,y,z是三个自变量,没有隐含关系。

3.求偏导时,对x求偏导,y,z看成常数;

对y求偏导,x,z看成常数;

对z求偏导,y,x看成常数。

4、求Fx时,x是变量,y,z看成常数,常数求导时为0。这里求偏导时,还用到复合函数求导,其中u=x-mz看成中间变量。按复合函数求导法则,应该先对中间变量u求导,再将中间变量u对x偏导的乘积。

5.类似,求另外两个偏导。

具体的你说的高数这隐函数求偏导问题的详细说明及其求偏导过程见上。

西域牛仔王4672747
2021-02-21 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30577 获赞数:146291
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
1、答案 Fx'=-f' 只是省写,
这里就是 -fx' 。
2、 Fy' 是对 y 求偏导,
后面 f(x-nz) 不含 y ,相当于常数,
对 y 求偏导时结果是 0 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2021-02-21 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8069万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2021-02-21 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67429

向TA提问 私信TA
展开全部
已知 F(x,y,z)=y-nz-f(x-mz),则
∂F/∂x=-[∂f/∂(x-mz)][∂(x-mz)/∂x]=-[∂f/∂(x-mz)]•1=-f'(x-mz)=-f';【这里把x-mz省去不写】
【f'表示函数f对中间变量(x-mz)的导数;一般地讲,f'≠f'x,后者f'x是函数f对x的导数】
【相当于f(x-mz)=f(u),u=x-mz;∴f'x=∂f/∂x=(∂f/∂u)(∂u/∂x)=f'•1=f',这里f'x=f'是因为
有特殊情况:∂u/∂x=∂(x-mz)/∂x=∂x/∂x=1】
∂F/∂y=1;
∂F/∂z=-n-[∂f/∂(x-mz)][∂(x-mz)/∂z=-n-[∂f/∂(x-mz)](-m)=m[∂f/∂(x-mz)]-n=mf'-n ;
这里的f'同上面的一样,都是f对中间变量(x-mz)的导数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式