一道线性代数证明题,与线性表示有关,见问题补充,谢谢啦
设A是n阶可逆矩阵,a1,a2,...,as(s<=n)都是n维非零列向量,且aitAtAaj=0(i不等于j),证明向量组a1,a2,...,as线性无关(t是置换矩阵...
设A是n阶可逆矩阵,a1,a2,...,as(s<=n)都是n维非零列向量,且aitAtAaj=0(i不等于j),证明向量组a1,a2,...,as线性无关 (t是置换矩阵的意思)
展开
1个回答
展开全部
∵A是n阶可逆矩阵,a1,a2,...,as(s<=n)都是n维非零列向量
∴Aaj≠0 (j=1,2,……,s)
ajtAtAaj≠0 (j=1,2,……,s)
作线性组合 k1a1+k2a2+...,+ksas
令 k1a1+k2a2+...,+ksas=0
在上式两端作用ajtAtA (j=1,2,……,s) 得:
kjajtAtAaj=0 (j=1,2,……,s)
由于 ajtAtAaj≠0 所以 kj=0 (j=1,2,……,s)
即a1,a2,...,as线性无关。证毕。
∴Aaj≠0 (j=1,2,……,s)
ajtAtAaj≠0 (j=1,2,……,s)
作线性组合 k1a1+k2a2+...,+ksas
令 k1a1+k2a2+...,+ksas=0
在上式两端作用ajtAtA (j=1,2,……,s) 得:
kjajtAtAaj=0 (j=1,2,……,s)
由于 ajtAtAaj≠0 所以 kj=0 (j=1,2,……,s)
即a1,a2,...,as线性无关。证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询