
展开全部
解:原式=lim(x->0)[2x*arctan(x²)/(4x³)] (0/0型极限,应用罗比达法则)
=(1/2)lim(x->0)[arctan(x²)/x²]
=(1/2)lim(x->0)[(2x/(1+x^4))/(2x)] (0/0型极限,应用罗比达法则)
=(1/2)lim(x->0)[1/(1+x^4)]
=(1/2)*(1/(1+0))
=1/2。
=(1/2)lim(x->0)[arctan(x²)/x²]
=(1/2)lim(x->0)[(2x/(1+x^4))/(2x)] (0/0型极限,应用罗比达法则)
=(1/2)lim(x->0)[1/(1+x^4)]
=(1/2)*(1/(1+0))
=1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询