设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).(Ⅰ)若a1,S2,-2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤ak≤4/3....
设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,-2a2成等比数列,求S2和a3.
(Ⅱ)求证:对k≥3有0≤ak≤ 4/3. 展开
(Ⅰ)若a1,S2,-2a2成等比数列,求S2和a3.
(Ⅱ)求证:对k≥3有0≤ak≤ 4/3. 展开
展开全部
1.
(S2)^2=-2a2*a1
S2=a2S1=a1a2=-(1/2)(S2)^2
(2+S2)S2=0
S2=-2或S2=0
如S2=0,则a2*a1=0且a1+a2=0,即a1=a2=an=0,a1,S2,-2a2不成等比数列;
如S2=-2,则a2*a1=-2且a1+a2=-2,符合题意,所以
S3=a3+S2=a3S2
a3=S2/(S2-1)
a3=-2/(-2-1)=2/3
2.
S(n+1)=a(n+1)Sn
S(n+1)=a(n+1)[S(n+1)-a(n+1)]
[a(n+1)-1]S(n+1)=[a(n+1)]^2
S(n+1)=[a(n+1)]^2/[a(n+1)-1]
Sn=(an)^2/(an-1)
S(n-1)=[a(n-1)]^2/[a(n-1)-1]
相减:
an=Sn-S(n-1)
=(an)^2/(an-1)-[a(n-1)]^2/[a(n-1)-1]
an/(an-1)=[a(n-1)]^2/[a(n-1)-1]
(S2)^2=-2a2*a1
S2=a2S1=a1a2=-(1/2)(S2)^2
(2+S2)S2=0
S2=-2或S2=0
如S2=0,则a2*a1=0且a1+a2=0,即a1=a2=an=0,a1,S2,-2a2不成等比数列;
如S2=-2,则a2*a1=-2且a1+a2=-2,符合题意,所以
S3=a3+S2=a3S2
a3=S2/(S2-1)
a3=-2/(-2-1)=2/3
2.
S(n+1)=a(n+1)Sn
S(n+1)=a(n+1)[S(n+1)-a(n+1)]
[a(n+1)-1]S(n+1)=[a(n+1)]^2
S(n+1)=[a(n+1)]^2/[a(n+1)-1]
Sn=(an)^2/(an-1)
S(n-1)=[a(n-1)]^2/[a(n-1)-1]
相减:
an=Sn-S(n-1)
=(an)^2/(an-1)-[a(n-1)]^2/[a(n-1)-1]
an/(an-1)=[a(n-1)]^2/[a(n-1)-1]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(Ⅰ)由题意{S22=-2a1a2S2=a2S1=a1a2,
得S22=-2S2,
由S2是等比中项知S2≠0,
∴S2=-2.
由S2+a3=a3S2,解得a3=S2S2-1=-2-2-1=23.
(Ⅱ)证明:因为Sn+1=a1+a2+a3+…+an+an+1=an+1+Sn,
由题设条件知Sn+an+1=an+1Sn,
∴Sn≠1,an+1≠1,且an+1=SnSn-1,
Sn=an+1an+1-1
又a3=23从而对k≥3,有
0≤ak≤43.
得S22=-2S2,
由S2是等比中项知S2≠0,
∴S2=-2.
由S2+a3=a3S2,解得a3=S2S2-1=-2-2-1=23.
(Ⅱ)证明:因为Sn+1=a1+a2+a3+…+an+an+1=an+1+Sn,
由题设条件知Sn+an+1=an+1Sn,
∴Sn≠1,an+1≠1,且an+1=SnSn-1,
Sn=an+1an+1-1
又a3=23从而对k≥3,有
0≤ak≤43.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询