数学e什么意思?
展开全部
自然对数函数的底数
e是一个实数。她是一种特殊的实数,我们称之为超越数。据说最早是从计算(1+1/x)^x当x趋向于无限大时的极限引入的。
当然e也有很多其他的计算方式,例如e=1+1/1!+1/2!+1/3!+?。
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。
它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
e是一个实数。她是一种特殊的实数,我们称之为超越数。据说最早是从计算(1+1/x)^x当x趋向于无限大时的极限引入的。
当然e也有很多其他的计算方式,例如e=1+1/1!+1/2!+1/3!+?。
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。
它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
展开全部
数学e是一个重要的常数,但是我一直不知道,它的真正含义是什么。它不像π。大家都知道,π代表了圆的周长与直径之比3.14159。
可是如果我问你,e代表了什么。你能回答吗?维基百科说:"e是自然对数的底数。"但是,你去看"自然对数",得到的解释却是:"自然对数是以e为底的对数函数,e是一个无理数,约等于2.718281828。"
这就构成了循环定义,完全没有说e是什么。数学家选择这样一个无理数作为底数,还号称这种对数很"自然",这难道不是很奇怪的事情吗。
数学中有许多重要的常数,例如圆周率π和虚数单位i(等于根号负一)。但数学中还有一个同样重要的常数,那就是自然常数e,尽管没有圆周率那么为人所熟知。这个常数经常出现在数学和物理学之中,但它从哪里来?它究竟是什么意思?
在18世纪初,数学大师莱昂哈德·欧拉(Leonard Euler)发现了这个自然常数e(又称欧拉数)。当时,欧拉试图解决由另一位数学家雅各布·伯努利(Jacob Bernoulli)在半个世纪前提出的问题。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询