已知数列{an}满足a1+2a2+3a3+...+nan=n(n+1)(n+2),则an= 过程详细点

 我来答
户如乐9318
2022-05-25 · TA获得超过6679个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
因为 a1+2a2+3a3+...+nan=n(n+1)(n+2),
所以 a1+2a2+3a3+...+(n-1)a(n-1)=(n-1)n(n+1),
两式相减,得 nan=n(n+1)[(n+2)-(n-1)]
所以 an=3(n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式