一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)

 我来答
新科技17
2022-07-02 · TA获得超过5892个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.3万
展开全部

反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。

全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。

图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。

为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:

输入的样本为:

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

第一层隐藏层有三个神经元: 、 和 。该层的输入为:

以 神经元为例,则其输入为:

同理有:

假设我们选择函数 作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为: 、 和 。

第二层隐藏层有两个神经元: 和 。该层的输入为:

即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:

该层的输出分别为: 和 。

输出层只有一个神经元 :。该层的输入为:

即:

因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为: 。

在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 ,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重 和偏置 )的偏导数。

假设我们要对第 层隐藏层的参数 和 求偏导数,即求 和 。假设 代表第 层神经元的输入,即 ,其中 为前一层神经元的输出,则根据链式法则有:

因此,我们只需要计算偏导数 、 和 。

前面说过,第k层神经元的输入为: ,因此可以得到:

上式中, 代表第 层神经元的权重矩阵 的第 行, 代表第 层神经元的权重矩阵 的第 行中的第 列。

我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:

因为偏置b是一个常数项,因此偏导数的计算也很简单:

依然以第一层隐藏层的神经元为例,则有:

偏导数 又称为 误差项(error term,也称为“灵敏度”) ,一般用 表示,例如 是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。

根据第一节的前向计算,我们知道第 层的输入与第 层的输出之间的关系为:

又因为 ,根据链式法则,我们可以得到 为:

由上式我们可以看到,第 层神经元的误差项 是由第 层的误差项乘以第 层的权重,再乘以第 层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、 和 ,则 和 可分别表示为:

下面是基于随机梯度下降更新参数的反向传播算法:

单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。

我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:

输入的样本为(假设其真实类标为"1"):

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

假设所有的激活函数均为Logistic函数: 。使用均方误差函数作为损失函数:

为了方便求导,我们将损失函数简化为:

我们首先初始化神经网络的参数,计算第一层神经元:

上图中我们计算出了第一层隐藏层的第一个神经元的输入 和输出 ,同理可以计算第二个和第三个神经元的输入和输出:

接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):

同样方法可以计算该层的第二个神经元的输入 和输出 :

最后计算输出层的输入 和输出 :

首先计算输出层的误差项 ,我们的误差函数为 ,由于该样本的类标为“1”,而预测值为 ,因此误差为 ,输出层的误差项为:

接着计算第二层隐藏层的误差项,根据误差项的计算公式有:

最后是计算第一层隐藏层的误差项:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式